Search results for "environment interactions"

showing 10 items of 25 documents

Tropical Andean forests are highly susceptible to nutrient inputs--rapid effects of experimental N and P addition to an Ecuadorian montane forest.

2012

Tropical regions are facing increasing atmospheric inputs of nutrients, which will have unknown consequences for the structure and functioning of these systems. Here, we show that Neotropical montane rainforests respond rapidly to moderate additions of N (50 kg ha -1 yr -1) and P (10 kg ha -1 yr -1). Monitoring of nutrient fluxes demonstrated that the majority of added nutrients remained in the system, in either soil or vegetation. N and P additions led to not only an increase in foliar N and P concentrations, but also altered soil microbial biomass, standing fine root biomass, stem growth, and litterfall. The different effects suggest that trees are primarily limited by P, whereas some pro…

0106 biological sciences010504 meteorology & atmospheric scienceslcsh:MedicinePlant Science01 natural sciencesPlant RootsTreesSoilNutrientGlobal Change EcologyBiomasslcsh:ScienceConservation ScienceBiomass (ecology)MultidisciplinaryEcologyEcologyPhosphorusVegetationBiodiversityPlant litterBiogeochemistrySoil EcologyPlantsTropical; Andean; Forests; Nutrient Input; N; P; Ecuadorian Montane ForestTerrestrial EnvironmentsEcuadorResearch ArticleNitrogenRainforestBiology010603 evolutionary biologyEcosystemsSystems EcologynutrientsPlant-Environment InteractionsForest ecologyEcosystemmontaneforestTerrestrial EcologyFertilizersBiologyEcosystem0105 earth and related environmental sciencesTropical ClimateChemical EcologyPlant Ecologylcsh:RTropics15. Life on landPlant Leaveslcsh:QEcological EnvironmentsPloS one
researchProduct

Mycorrhizal symbiosis primes the accumulation of antiherbivore compounds and enhances herbivore mortality in tomato

2021

Abstract Plant association with arbuscular mycorrhizal fungi (AMF) can increase their ability to overcome multiple stresses, but their impact on plant interactions with herbivorous insects is controversial. Here we show higher mortality of the leaf-chewer Spodoptera exigua when fed on tomato plants colonized by the AMF Funneliformis mosseae, evidencing mycorrhiza-induced resistance. In search of the underlying mechanisms, an untargeted metabolomic analysis through ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS) was performed. The results showed that mycorrhizal symbiosis had a very limited impact on the leaf metabolome in the absence of stress, but significantly m…

0106 biological sciences0301 basic medicineAzelaic acidPhysiologyPlant Science01 natural sciences03 medical and health sciencesMetabolomicsSolanum lycopersicumSymbiosisTandem Mass SpectrometrySpodoptera exiguaMycorrhizaeBotanyExiguamedicineMetabolomeAnimalsMetabolomicsmycorrhiza induced resistanceHerbivoryArbuscular mycorrhizaSymbiosisHerbivorebiologyAcademicSubjects/SCI01210AlkaloidfungiFungifood and beveragesbiology.organism_classificationResearch PapersArbuscular mycorrhizaspodoptera exigua030104 developmental biologyDefence primingPlant—Environment InteractionsMycorrhiza induced resistance Spodoptera exiguaChromatography Liquid010606 plant biology & botanymedicine.drug
researchProduct

Arbuscular mycorrhizal symbiosis mitigates the negative effects of salinity on durum wheat

2017

Arbuscular mycorrhizal (AM) symbiosis is generally considered to be effective in ameliorating the plant tolerance to salt stress. Unfortunately, the comprehension of the mechanisms implicated in salinity stress alleviation by AM symbiosis is far from being complete. Thus, an experiment was performed by growing durum wheat (Triticum durum Desf.) plants under salt-stress conditions to evaluate the influence of AM symbiosis on both the plant growth and the regulation of a number of genes related to salt stress and nutrient uptake. Durum wheat plants were grown outdoors in pots in absence or in presence of salt stress and with or without AM fungi inoculation. The inoculum consisted of a mixture…

0106 biological sciences0301 basic medicineRhizophagus irregularisSalinityLeavesGene Expressionlcsh:MedicinePlant SciencePlant RootsPolymerase Chain ReactionPhysical Chemistry01 natural sciencesNutrientMycorrhizaePlant Resistance to Abiotic Stresslcsh:ScienceTriticumBiomass (ecology)MultidisciplinaryEcologyPlant Anatomyfood and beveragesSalt TolerancePlantsSettore AGR/02 - Agronomia E Coltivazioni ErbaceeChemistryPlant PhysiologyPhysical SciencesWheatSymbiosiResearch ArticleBiology03 medical and health sciencesSymbiosisSettore AGR/07 - Genetica AgrariaPlant-Environment InteractionsBotanyGeneticsPlant DefensesGene RegulationGrassesSymbiosisBiochemistry Genetics and Molecular Biology (all)InoculationGene Expression ProfilingPlant EcologyEcology and Environmental Scienceslcsh:RfungiOrganismsFungiBiology and Life SciencesPlant RootPlant Pathologybiology.organism_classificationSporeSalinitySpecies Interactions030104 developmental biologyAgricultural and Biological Sciences (all)Chemical PropertiesArbuscular mycorrhizal symbiosislcsh:QSalt-Tolerance010606 plant biology & botanyPLOS ONE
researchProduct

Ocean Acidification and the Loss of Phenolic Substances in Marine Plants

2012

Rising atmospheric CO(2) often triggers the production of plant phenolics, including many that serve as herbivore deterrents, digestion reducers, antimicrobials, or ultraviolet sunscreens. Such responses are predicted by popular models of plant defense, especially resource availability models which link carbon availability to phenolic biosynthesis. CO(2) availability is also increasing in the oceans, where anthropogenic emissions cause ocean acidification, decreasing seawater pH and shifting the carbonate system towards further CO(2) enrichment. Such conditions tend to increase seagrass productivity but may also increase rates of grazing on these marine plants. Here we show that high CO(2) …

0106 biological sciencesCymodocea nodosaved/biology.organism_classification_rank.speciesCarbonatesSecondary MetabolismMarine and Aquatic Scienceslcsh:MedicinePlant Science01 natural scienceschemistry.chemical_compoundGlobal Change Ecologylcsh:SciencePhysiological EcologyMultidisciplinaryAlismatalesbiologyEcologyEcologyPlant BiochemistryMarine EcologyOcean acidificationPotamogetonaceaeHydrogen-Ion ConcentrationSeagrassProductivity (ecology)ItalyCarbon dioxideCoastal EcologyResearch ArticleOceans and SeasMarine Biology010603 evolutionary biologyStatistics NonparametricHydrothermal VentsPhenolsPlant-Environment InteractionsTerrestrial plantSeawater14. Life underwaterocean acidification climate change mediterranean sea seagrassBiologyAnalysis of VarianceChemical EcologyMarylandved/biology010604 marine biology & hydrobiologyPlant Ecologyfungilcsh:R15. Life on landCarbon Dioxidebiology.organism_classificationSalinitychemistry13. Climate actionEarth Scienceslcsh:QRuppia maritima
researchProduct

Bryophyte Species Richness on Retention Aspens Recovers in Time but Community Structure Does Not

2014

Green-tree retention is a forest management method in which some living trees are left on a logged area. The aim is to offer ‘lifeboats’ to support species immediately after logging and to provide microhabitats during and after forest re-establishment. Several studies have shown immediate decline in bryophyte diversity after retention logging and thus questioned the effectiveness of this method, but longer term studies are lacking. Here we studied the epiphytic bryophytes on European aspen (Populus tremula L.) retention trees along a 30-year chronosequence. We compared the bryophyte flora of 102 ‘retention aspens’ on 14 differently aged retention sites with 102 ‘conservation aspens’ on 14 d…

0106 biological sciencesEcological Political Economy010504 meteorology & atmospheric sciencesDIVERSITYBiodiversitylcsh:MedicinePlant ScienceBryology01 natural scienceslehtisammaletMICROCLIMATIC GRADIENTSTreesbryophyte diversitysammaletAbundance (ecology)TREE RETENTIONlcsh:Science1183 Plant biology microbiology virologyConservation Scienceforest reestablishmentMultidisciplinaryEcologyEcologyLoggingmetsänkäsittelyForestryAgricultureBiodiversityFINLANDta4112metsätHabitatCommunity EcologyGROWTHResearch ArticleConservation of Natural ResourcesEPIPHYTIC BRYOPHYTESChronosequenceeducationCONSERVATIONForest managementBryophytaBiology010603 evolutionary biologyBOREAL FORESTelvytysPlant-Environment InteractionsEDGES0105 earth and related environmental sciencesPlant Ecologylcsh:REcology and Environmental SciencesBiology and Life SciencesBayes Theorem15. Life on landhakkuualueetREPRODUCTIONta1181lcsh:QBryophyteSpecies richnessmetsänhoitogreen tree retentionAgroecologyPLOS ONE
researchProduct

Interaction between Medicago truncatula and Pseudomonas fluorescens: evaluation of costs and benefits across an elevated atmospheric CO2.

2012

10 pages; International audience; Soil microorganisms play a key role in both plants nutrition and health. Their relation with plant varies from mutualism to parasitism, according to the balance of costs and benefits for the two partners of the interaction. These interactions involved the liberation of plant organic compounds via rhizodeposition. Modification of atmospheric CO2 concentration may affect rhizodeposition and as a consequence trophic interactions that bind plants and microorganisms. Positive effect of elevated CO2 on plants are rather well known but consequences for micoorganisms and their interactions with plants are still poorly understood. A gnotobiotic system has been devel…

0106 biological scienceslcsh:MedicineplantPlant Science01 natural sciencesPlant RootsPlant reproductionnitrogenPlant Microbiologyterrestrial ecosystem[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/Symbiosislcsh:ScienceSoil Microbiology2. Zero hungerMutualism (biology)Abiotic componentPlant Growth and Development0303 health sciencesRhizospheredynamicMultidisciplinaryresponsebiologyEcologyfood and beveragesMedicago truncatulacarbon-dioxide;terrestrial ecosystem;development;dynamic;nitrogen;plant;soil;rhizosphere;response;Pseudomonas fluorescensSeedsSoil microbiologyEcosystem FunctioningResearch Article[ SDV.SA.SDS ] Life Sciences [q-bio]/Agricultural sciences/Soil studyPseudomonas fluorescensFlowers[SDV.SA.SDS]Life Sciences [q-bio]/Agricultural sciences/Soil studycarbon-dioxidePseudomonas fluorescensMicrobiologyEcosystemsMicrobial Ecologysoil03 medical and health sciencesSymbiosisPlant-Environment InteractionsBotanyMedicago truncatulaSymbiosisBiologydevelopment030304 developmental biology[ SDE.BE ] Environmental Sciences/Biodiversity and EcologyAnalysis of VarianceAtmospherePlant Ecologylcsh:RfungiComputational Biology15. Life on landCarbon Dioxidebiology.organism_classificationPlant LeavesAgronomylcsh:Q[SDE.BE]Environmental Sciences/Biodiversity and EcologyrhizosphereEcosystem Modeling010606 plant biology & botany[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis
researchProduct

Gene-environment interactions between education and body mass: Evidence from the UK and Finland

2017

More education is associated with a lower body mass index (BMI) and likelihood of being overweight. However, since a large proportion of the variation in body mass is due to genetic makeup, it has been hypothesized that education may moderate the genetic risk. We estimate main associations between (i) education, (ii) genetic risk, and (iii) interactions between education and genetic risk on BMI and the probability of being overweight in the UK and Finland. The estimates show that education is negatively associated with BMI and overweightness, and genetic risk is positively associated. However, the interactions between education and genetic risk are small and statistically insignificant. pee…

0301 basic medicineAdultMaleta520obesityHealth (social science)OverweightBiologyBody Mass Index03 medical and health sciences0302 clinical medicineLower bodyHistory and Philosophy of SciencekoulutustasoNegatively associatedmedicineHumansMass indexGenetic Predisposition to Diseaseta516030212 general & internal medicineLongitudinal StudiesGene–environment interactionGeneFinlandAged2. Zero hungerAged 80 and overeducationta511nutritional and metabolic diseasesylipainogene-environment interactionsta3142Middle AgedOverweightmedicine.diseaseObesityUnited Kingdom030104 developmental biologykoulutusEducational StatuslihavuusFemaleGene-Environment Interactionmedicine.symptomgeneettiset tekijätBody mass indexDemographySocial Science and Medicine
researchProduct

A putative antiviral role of plant cytidine deaminases

2014

[Background]: A mechanism of innate antiviral immunity operating against viruses infecting mammalian cells has been described during the last decade. Host cytidine deaminases (e.g., APOBEC3 proteins) edit viral genomes, giving rise to hypermutated nonfunctional viruses; consequently, viral fitness is reduced through lethal mutagenesis. By contrast, sub-lethal hypermutagenesis may contribute to virus evolvability by increasing population diversity. To prevent genome editing, some viruses have evolved proteins that mediate APOBEC3 degradation. The model plant Arabidopsis thaliana genome encodes nine cytidine deaminases ( AtCDAs), raising the question of whether deamination is an antiviral mec…

0301 basic medicinevirusesPopulation030106 microbiologyDeaminationAntiviral innate immunityGenomeGeneral Biochemistry Genetics and Molecular BiologyVirusError catastrophePararetrovirusGene product03 medical and health scienceschemistry.chemical_compoundPlant-virus interactionGenome editingPlant-Environment InteractionsVirologyHypermutagenesisArabidopsis thalianaGeneral Pharmacology Toxicology and PharmaceuticseducationGeneGeneticseducation.field_of_studyCauliflower mosaic virusGeneral Immunology and MicrobiologybiologyHost (biology)fungifood and beveragesCytidineGeneral MedicineArticlesbiology.organism_classificationVirologyVirus evolution030104 developmental biologychemistryMutational spectrumPlant Genetics & Gene ExpressionViral evolutionCauliflower mosaic virusResearch Article
researchProduct

Molecular bases of anorexia nervosa, bulimia nervosa and binge eating disorder: shedding light on the darkness

2017

International audience; Eating-disorders (EDs) consequences to human health are devastating, involving social, mental, emotional, physical and life-threatening aspects, concluding on impairment and death in cases of extreme anorexia nervosa. It also implies that people suffering an ED need to find psychiatric and psychological help as soon as possible to achieve a fully physical and emotional recovery. Unfortunately, to date, there is a crucial lack of efficient clinical treatment to these disorders. In this review, we present an overview concerning the actual pharmacological and psychological treatments, the knowledge of cells, circuits, neuropeptides, neuromodulators and hormones in the h…

Anorexia NervosaPsychotherapistcognitive-behavioral therapy[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionneuromodulatorsAnorexia nervosa/bulimia03 medical and health sciencesCellular and Molecular NeuroscienceHuman health0302 clinical medicineplacebo-controlled trialBinge-eating disordermesolimbic dopamine systemGeneticsmedicineHumansGenetic Predisposition to DiseaseBulimia NervosaClinical treatmentregulate feeding-behaviornucleus-accumbens shellborderline personality-disordergene-environment interactionsmedicine.disease030227 psychiatryEating disorderssubstance use disordersAnorexia nervosa (differential diagnoses)genetic approachesrandomized controlled-trialEating disordersgenome-wide associationpharmacologyPsychology[SDV.AEN]Life Sciences [q-bio]/Food and NutritionBinge-Eating Disorder030217 neurology & neurosurgeryClinical psychologyJournal of Neurogenetics
researchProduct

Effects of environment and genotype on dispersal differ across departure, transfer and settlement in a butterfly metapopulation

2022

Active dispersal is driven by extrinsic and intrinsic factors at the three stages of departure, transfer and settlement. Most empirical studies capture only one stage of this complex process, and knowledge of how much can be generalized from one stage to another remains unknown. Here we use genetic assignment tests to reconstruct dispersal across 5 years and 232 habitat patches of a Glanville fritillary butterfly ( Melitaea cinxia ) metapopulation. We link individual dispersal events to weather, landscape structure, size and quality of habitat patches, and individual genotype to identify the factors that influence the three stages of dispersal and post-settlement survival. We found that ne…

DYNAMICSGenotypePopulation DynamicsperhosetEMIGRATIONgenotyyppiGeneral Biochemistry Genetics and Molecular Biologypatch qualitybutterflyAnimalsdispersaltäpläverkkoperhonenWeathergenotype-by-environment interactionsEcosystemGeneral Environmental ScienceEkologiPERSONALITYCONSEQUENCESgenetic assignment testsEcologyGeneral Immunology and MicrobiologyMELITAEA-CINXIAlevinneisyysGeneral MedicineGENEpopulaatioekologiafitnessASSIGNMENT TESTSHABITAT FRAGMENTATIONMETABOLIC-RATE1181 Ecology evolutionary biologypatchqualityGeneral Agricultural and Biological SciencesButterfliesleviäminenFRITILLARYProceedings of the Royal Society B: Biological Sciences
researchProduct